
Yufei Shi
� 412–251–8844 # contact@shiyufei.com ï yufei-shi § yshi02 � shiyufei.com

Education
Carnegie Mellon University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pittsburgh, PA
M.S. in Electrical and Computer Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expected May 2025
B.S. in Electrical and Computer Engineering with University Honors, CQPA: 3.69 . . . . . . . . . . . . . . . . . . . . May 2024
• Teaching assistant: Intro to Computer Systems (4 semesters); Computer Systems and HW-SW Interface (1 semester)
• Courses: Intro to Computer Architecture, Parallel Computer Architecture & Programming, OS Design & Implementation

Experience
Carnegie Mellon University, ABSTRACT Research Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pittsburgh, PA
Research Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jan 2023 — Present
• Conducted research on the memory consistency model Û and asynchronous programming model ° of
Coarse-Grained Reconfigurable Architecture (CGRA), a hardware dataflow architecture.

Û ° Added support for lightweight threads in the dataflow execution simulator by extending the ISA with a new pro-
cessing element, implementing thread dispatch synchronization, and resolving legacy bugs within the simulator.

Û Analyzed CGRA’s memory consistency model by developing testing programs with diverse memory access pat-
terns, tracing their execution on the simulator and identifying violations of sequential consistency in the trace.

Û Designed a HW-SW solution for enforcing sequential consistent execution of pipelined dataflow programs.
° Contributed to the design of a programming language for expressing parallelism in CGRA applications by con-

verting algorithms with irregular memory access patterns into pipelined, work-queue-based implementations.
° Contributed to the implementation of a state-machine for synchronizing asynchronously-dispatched task inputs.

Projects
Unix-like x86 OS Kernel with Thread Library | C, Simics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Sep-Dec 2023
• Designed and implemented a Unix-like x86 OS Kernel that supports preemptive multitasking, multiple memory
address spaces, and a set of important system calls as well as device drivers for timer, keyboard, and console.

• Implemented kernel thread context switching, scheduler with multiple scheduling queues and prioritized round-
robin scheduling algorithm, and kernel-level synchronization primitives to realize preemptive multitasking.

• Implemented standard 32-bit x86 two-level paged virtual memory that supports zero-filled on-demand paging.
• Implemented task/thread interface that works with my implementation of a POSIX-like thread library.
Parallel Mesh Collision Detector | C++, CUDA, GDB, OpenMP, Open3D . . . . . . . . . . . . . . . . . . . . . . .Apr-May 2023
• Developed a parallel algorithm to accurately determine the minimum distances between convex meshes,
which can be used to detect potential collisions between objects in real-time for robotic motion planning tasks.

• Implemented Gilbert-Johnson-Keerthi algorithm and optimized it by parallelizing its support function in CUDA.
• Developed a simulation and visualization framework for demonstrating the algorithm running in complex scenes.
• Achieved a 20x speedup over the baseline by combining CUDA and OpenMP with additional optimizations.
In-Order 2-Way Superscalar RISC-V Processor | C++, SystemVerilog, Synopsys VCS & DC . . . . . . . Jan-Apr 2023
• Designed and implemented an RV32I processor featuring a 2-way superscalar in-order 5-stage pipeline.
• Implemented branch prediction and data forwarding capabilities to alleviate data hazards in the 5-stage
pipeline, and ensured their integration with the final superscalar pipeline to maximize IPC of the processor.

• Conducted timing and power optimizations over design iterations by iteratively analyzing synthesis report
and making adjustments to the design; achieved a 15% IPS increase while reducing power consumption by 80%.

Skills
Programming Languages: C, C++, Python, Rust, Shell, x86 Assembly, Common Lisp (a little bit)
Hardware Design Tools: SystemVerilog, Synopsys VCS, Synopsys Design Compiler, Intel Quartus, Fusion 360
Developer Tools: GDB, Git, Make, Valgrind, awk, vim, Regex, Conda, Various Linux Distros, Pin Tool, gem5
Technologies: MATLAB, SOLIDWORKS, NumPy, Matplotlib, OpenMP, MPI, CUDA, OpenGL, HTML, LATEX

Last Updated: May 11, 2024

mailto:contact@shiyufei.com
https://linkedin.com/in/yufei-shi/
https://github.com/yshi02
https://shiyufei.com

